Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Daniel E. Lynch

School of Science and the Environment, Coventry University, Coventry CV1 5FB, England

Correspondence e-mail: apx106@coventry.ac.uk

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
H -atom completeness 98%
Disorder in solvent or counterion
R factor $=0.063$
$w R$ factor $=0.208$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(2-ammonioethyl)amine benzene-1,3,5-tricarboxylate 5.5-hydrate

The structure of the title compound, $2,2^{\prime}, 2^{\prime \prime}$-nitrilotri(ethylammonium) benzene-1,3,5-tricarboxylate 5.5-hydrate, $\mathrm{C}_{6} \mathrm{H}_{21} \mathrm{~N}_{4}{ }^{3+} \cdot \mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}{ }^{3-} \cdot 5.5 \mathrm{H}_{2} \mathrm{O}$, comprises the $1: 1$ organic salt of tris(2-ammonioethyl)amine and benzene-1,3,5-tricarboxylate in a complex hydrogen-bonded network which also includes four full water molecules and two with partial occupancies of 0.80 (2) and 0.70 (2).

Comment

A search of the April 2003 release of the Cambridge Structural Database (Allen, 2002) reveals that both benzene-1,3,5tricarboxylic acid and cyclohexane-1,3,5-tricarboxylic acid are involved in the structures of 61 salt, adduct, clathrate or hydrate complexes. Of these structures, 17 incorporate molecules that do not contain either an amine group or heterocyclic N atom, whereas the remaining structures do contain other molecules with these features. Of the latter structures, only five contain molecules with three or more N atoms, available for protonation from the acid H atoms, in the same molecule. Three of these are large selective tripod molecules (Ballester et al., 1997, 2001), while the other two are derivatives of 1,4,8,11-tetraazacyclotetradecane (Burchell et al., 2001) and 1,3,5-triaminocyclohexane (Menger et al., 2002). Interestingly, the structures of neither tricarboxylic acid analogue with tris(2-aminoethyl)amine have been determined. Separate mixing of the two triacids with tris(2-aminoethyl)amine resulted in crystals and subsequent determination of the structure of the organic salt of only the benzene analogue with the tripod amine.

The 1:1 organic salt, (I), of benzene-1,3,5-tricarboxylate with tris(2-ammonioethyl)amine consists of both ions in a complex hydrogen-bonded network which also includes four water molecules and two partial-occupancy water molecules (Fig. 1). Two of the base ammonium groups ($\mathrm{N} 4 A$ and $\mathrm{N} 7 A$) associate through all their H atoms to different carboxylate O atoms (except for $\mathrm{N} 4 A-\mathrm{H} 43 A \cdots \mathrm{O} 5 W$), while the third ammonium group ($\mathrm{N} 10 A$) associates through two of its H atoms to three of the water molecules $(\mathrm{O} 1 W, \mathrm{O} 2 W$ and $\mathrm{O} 6 W)$, the third H atom $(\mathrm{H} 11 A)$ associating to $\mathrm{O} 52 B$. Of the water molecules, $\mathrm{O} 1 \mathrm{~W}-\mathrm{O} 4 W$ mostly associate to carboxylate O atoms $(\mathrm{O} 3 W-\mathrm{H} 31$ and $\mathrm{O} 4 W-\mathrm{H} 41$ associate to $\mathrm{O} 6 W)$,

Received 16 June 2003
Accepted 27 June 2003
Online 30 June 2003

Figure 1
The molecular configuration and atom-numbering scheme for the title compound, showing 50% probability displacement parameters.
whereas O 5 W and O 6 W associate to other water molecules, although $\mathrm{O} 6 W$ is 2.916 (3) \AA from $\mathrm{N} 10 A(1-x, 1-y, 1-z)$. Partial occupancies for O5W [0.80 (2) occupancy] and O6W [0.70 (2) occupancy], giving a total of 5.5 water molecules in the asymmetric unit, best fits the CHN analysis of the crystals (found: $\mathrm{C} 39.3, \mathrm{H} 7.6, \mathrm{~N} 12.4 \% ; \mathrm{C}_{15} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{11.5}$ requires C 39.6, H 7.7, N 12.3%). Residual electron density of 0.68 e \AA^{-3} was located $1.01 \AA$ from O2W and is essentially equidistant from the two H atoms, creating $\mathrm{H}-\mathrm{O} 2 W$-peak angles of $46-47^{\circ}$. The first four unassigned peaks in the difference map closely proximate $\mathrm{O} 1 W-\mathrm{O} 4 W$ and their respective H atoms but are not in suitable positions to be considered as alternative H atoms.

Experimental

Equimolar amounts of benzene-1,3,5-tricarboxylic acid and tris(2aminoethyl)amine were refluxed in ethanol for 20 min . Total evaporation of the solvent gave colourless prisms (m.p. 453 K).

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{21} \mathrm{~N}_{4}{ }^{3+} . \mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}{ }^{3-} .5 .5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=455.47$
Triclinic, $P \overline{1}$
$a=9.5850(10) \AA$
$b=10.7110(10) \AA$
$c=12.980(2) \AA$
$\alpha=72.790(10)^{\circ}$
$\beta=73.670(10)^{\circ}$
$\gamma=62.93(8)^{\circ}$
$V=1116.5(8) \AA^{3}$

Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.027$
\quad diffractometer	$\theta_{\max }=25.0^{\circ}$
$2 \theta / \omega$ scans	$h=0 \rightarrow 11$
Absorption correction: ψ scan	$k=-11 \rightarrow 12$
$\quad($ Xtal3.2; Hall et al., 1992$)$	$l=-14 \rightarrow 15$
$T_{\min }=0.930, T_{\max }=0.942$	3 standard reflections
4196 measured reflections	every 200 reflections
3937 independent reflections	intensity decay: 25%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1270 P)^{2} \\
&+0.3227 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.68 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.50 \mathrm{e}^{-3}
\end{aligned}
$$

organic papers

Ballester, P., Costa, A., Deya, P. M., Deslongchamps, G., Mink, D., Decken, A., Prohens, R., Tomas, S. \& Vega, M. (1997). Chem. Commun. pp. 357358.

Ballester, P., Capo, M., Costa, A., Deya, P. M., Gomila, R., Decken, A. \& Deslongchamps, G. (2001). Org. Lett. 3, 267-270.
Burchell, C. J., Ferguson, G., Lough, A. J. \& Glidewell, C. (2001). Acta Cryst. C57, 311-314.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.

Hall, S. R., Flack, H. D. \& Stewart, J. M. (1992). Editors. Xtal3.2 Reference Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
Menger, F. M., Bian, J. \& Azov, V. A. (2002). Angew. Chem. Int. Ed. Engl. 41, 2581-2584.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). PLATON97. University of Utrecht, The Netherlands.

